The natural evolution of science and technology has increased our understanding of the brain and shown us how this vital organ works on a functional and cellular level. Much progress has been made — our knowledge is vastly more advanced today than it was even a decade ago.

Yet in many ways, progress on how we handle concussions, as well as other brain injuries and neurological disorders, is still hindered by the limited knowledge we have of the functional networks of the brain and how these networks change over time. Standard methods of evaluating and treating brain injuries and disease such as MRI and EEG have long existed. Despite these technologies, the brain remains something that neurologists must treat without being able to directly visualize the underlying networks.

TRENDING ON CPA: New Options for Migraine, Headache Management 

As practicing neurologists, this problem presents an opportunity for us to rethink how we analyze the brain when treating injuries such as concussion. Specifically, we need to embrace and utilize new technologies that can measure and monitor brain network health on an extended time-frame. The more we understand how the brain is operating over time, the greater our chances of leveraging this information with our knowledge of other neurological disorders. Not only must this shift in mindset occur among neurologists, but awareness must improve among patients themselves — attention to brain health should not be optional or initiated as the result of an injury or illness

Continue Reading

Utilizing Brain Network Activation

When a patient is recovering from a concussion and feeling better, the neurologist must determine whether the injury has healed without direct knowledge of whether the injury itself is present. A non-invasive, non-surgical baseline diagnostic technology, such as Brain Network Activation (BNA), has the ability to measure brain networks over time and allow neurologists to be more confident as to whether these networks are intact and operating at normal function following an injury. It is a level of information that is currently inaccessible with other technologies, and critical in preventing patients from returning to risky activities while they are still vulnerable.

This article originally appeared on Neurology Advisor